Posts

Showing posts from February, 2025

Penrose Tessellation Calculator

 "Unlocking Mathematical Beauty: How Your Mobile Calculator Can Master Penrose Tiling" Title "Penrose Tiling Made Simple: Your Mobile Calculator’s Secret Weapon for Complex Math" Introduction Imagine calculating the intricate patterns of  Penrose tiling —a mathematical marvel of aperiodic design—on your phone. Sounds impossible? Think again. Your calculator isn’t just for basic arithmetic. With its  PenroseTileCount function , it can estimate how many thin and fat rhombuses fit into any area, leveraging the  golden ratio  (φ ≈ 1.618) for accuracy. What Is Penrose Tiling? Penrose tiling is a  non-repeating pattern  of rhombuses (36° and 72° angles) that defies periodicity. Its beauty lies in its  self-similar structure , where tiles scale by the golden ratio. This tiling has inspired art, architecture, and even quantum physics research. How the PenroseTileCount Function Works Your calculator’s function breaks down the problem into  three key s...

Function for Riemann Sum

Image
  Function calculator offers excellent extensibility in calculations, not only providing basic arithmetic operations but also allowing users to create mathematical functions through programming. In this example, we'll utilize this outstanding extensibility to calculate the definite integral or Riemann sum of a quadratic function. We'll assume the quadratic function takes the general form ax2+bx+c. You can program code as bellows in the factory page of Function Calculator. def RiemannSum(a,b,c,start,end,n){     var Sn=0;     var delta=(end-start)/n;     var k=1;     while(k<=n){       var x=start+delta*(k-0.5);       var h=a*x*x+b*x+c;       var s=delta*abs(h);       Sn=Sn+s;       k=k+1;     }     return Sn; } Above logic is to calculate estimated area by taking abs(h) which is absolute value of h as the h value. If you want to calculat...

n-th prime number

Image
Let's create a math function that calculates n-th prime number in the factory page in the Function Calculator . In order to create that function we need to create a helper function that determines whether a number is prime number or not first as below. def isPrime(n) {     if (n <= 1) {         return false;     }     var i = 2;     while (i * i <= n) {         if (n % i == 0) {             return false;         }         i = i + 1;     }     return true; } Using above helper function we can create the function as below. def nthPrime(n) {     var count = 0;     var num = 2;     while (count < n) {         if (isPrime(num)) {             count = count + 1;         }         if (count == n) { ...

Smart Shopping with Function Calculator

Image
Smart Shopping with Function Calculator! Did you know you can easily track market prices and calculate totals in seconds? With Function Calculator , you can assign prices to items and use them in calculations just like numbers! Example: Set Prices for Your Market Items var apple = 5; var pear = 6; Now, whenever you need to calculate your total cost, just use them in your expressions! Quick Shopping Calculation Imagine you’re buying 2 apples and 3 pears : apple × 2 + pear × 3 ➡ Total: 28 (because 5×2 + 6×3 = 28 ) No need to remember prices every time! Define them once and use them anytime. Perfect for quick grocery math, budgeting, or even tracking expenses! Try it now and make math effortless!

Which is bigger between 49^51 and 50^50?

Image
You can see which is more big very easily by function calculator . In the factory page type in the expression as below and press run button then the calculator shows the result.

개인정보처리방침(Privacy Policy)

Privacy Policy 1. Personal Information Collection - This calculator app does not directly collect any personal information for its core functionality. - However, through our use of Google AdMob advertising services, the following information may be collected:   * Advertising ID   * Device information   * Approximate location data   * Service usage records 2. Purpose of Data Collection and Use - Improving app performance and error analysis - Providing personalized advertisements - Analyzing service usage statistics - Enhancing user experience 3. Data Retention and Usage Period - Data will b...

Calculation for geometric series

Using SimpleMath to Compute Recursively Converging Series The coding script SimpleMath , supported by Function Calculator , is highly useful for computing recurrence relations that converge systematically by 1. Let’s consider the following infinite series: 1 + 1/2 + 1/4 + 1/8 + ... + 1/2^n + ... This series sums an infinite sequence where each term is half of the previous one. Deriving the Recurrence Relation To compute this series, let’s first define its sum as : S = 1 + 1/2 + 1/4 + 1/8 + ... + 1/2^n + ... Now, let's multiply by : (1/2)*S = 1/2 + 1/4 + 1/8 + ... + 1/2^n + ... Since this new series is essentially with the first term 1 removed, we can express it as: (1/2)*S = S - 1 Solving for  S, we get: S = 1 + (1/2) * S Implementing in SimpleMath Using SimpleMath , we can code this recurrence relation as follows: def S(n) = 1 + (1/2) * S(n-1); S(0) = 0; Here, S(n) and S(n-1) represent the sum S in our recurrence logic. Since S(n) and S(n-1) are nearly id...

점화식 계산해보기

힘수계산기 에서 지원하는 코딩 스크립트인 SimpleMath를 이용하면 규칙적으로 1씩 수렴하는 점화식을 계산하는데 매우 유용합니다. 가령 다음을 계산해 봅시다. 1+1/2+1/4+1/8+.....+1/2^n+... 위 식은 매번 절반씩 줄어드는 수를 무한히 더하는 식입니다. 위 식을 계산하는 로직을 우선 만들어봅시다. 우선 위 수식의 결과를 아래와같이 S로 놓읍시다. S = 1+1/2+1/4+1/8+.....+1/2^n+... 자 이번에는 S에 1/2를 곱해서 어떤 모양인지 살펴봅시다. (1/2)*S = 1/2+1/4+1/8+.....+1/2^(n-1)+1/2^n...  = S - 1 따라서 구하고자 하는 S는 다음과 같이 표현될 수 있습니다. S = 1 + (1/2)*S 위와 같은 로직을 함수계산기 의 프로그래밍 스크립트인 SimpleMath를 사용하여 다음과 같이 코딩할 수 있습니다. def S(n)=1+(1/2)*S(n-1); S(0)=0; 여기서 S(n)  과 S(n-1)은 위 로직에서 S를  나타냅니다 n이 충분히 크면 사실상 S(n)과 S(n-1)은 같다고 볼 수 있습니다. 다만 위와 같은 재귀함수에서 인수가 수렴하지 않으면 무한실행의 오류에 빠지기때문에 S(n-1)과 같이 인수가 감소하도록 설정된것입니다. n이 커지면 커질수록 충분히 정확한  결과값을 도출합니다.  그리고 빠뜨리지 말아야 할 두번째 코드 S(0)=0 은 재귀함수가 무한실행의 오류를 일으키지 않도록 하는 종료조건입니다. S(0)일 때는 1+(1/2)*S(-1)과 같이 메인 로직대로 계산하면 안되고 그냥 0이  도출되도록 강제로 설정하는 코드입니다. 이 코드가 없으면 무한실행의 오류에 빠집니다. 위와같이 공장 페이지에서 코딩을 한 후 run 버튼을 눌러서 실행하고 그 다음 save 버튼을 눌러 저장하십시오. 이 후 계산기 페이지로 돌아와 F2버튼을 누르면 방금 만든 함수를 확인할 수 있습니다. 함수를 선택해 계산기에서 S(60)을 ...

Calculator Buttons Information

Image
F1   :  When you press this button, a list of mathematical functions such as cos, sin, round, etc. will appear. You can select one math function by touching one item. F2   :  Clicking this button will bring up a list of custom math functions you have created. You can select a math function by touching one item. ,     : function argument separator =   : If you press this button after entering a mathematical expression such as "2+3", the expression and calculated results will be saved in the calculation history. Function Calculator